THE TRIGOMETER.

The basic definitions for sin, cos and tan need to be extended for angles greater than 90°

BASIC DEFINITIONS:

Using the old SOH CAH TOA idea :

$$
\begin{aligned}
& \sin \theta=\frac{b}{c} \\
& \cos \theta=\frac{a}{c}
\end{aligned}
$$

$\tan \theta=\underline{b}$

The first step is to let the hypotenuse be of length 1 unit:

Using the old SOH CAH TOA idea :
$\sin \theta=\frac{y}{1}=y$
$\cos \theta=\frac{x}{1}=x$
$\tan \theta=\frac{y}{x}$ this is just the same as above.

NEW DEFINITIONS.

Now we imagine that OP is a unit vector which can rotate about the origin.

Now $\sin \theta$ is defined to be the y coordinate of unit vector OP
Similarly, $\cos \theta$ is the x coord of OP.

Also, since $\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}=\boldsymbol{y}$ \boldsymbol{x}
then $\tan \theta=\underline{\sin \theta}$ $\cos \theta$

As OP rotates around O we can produce all we need to know about sin, cos and tan of any sized angle. We are now not restricted to angles less than 90°.

In this case suppose $\theta=120^{\circ}$
then $\sin 120=$ a positive y value
but $\cos 120=$ a negative x value

In this case suppose $\theta=240^{\circ}$
then $\sin 240=$ a negative y value and $\cos 240=$ a negative x value

In this case suppose $\theta=300^{\circ}$
then $\sin 300=$ a negative y value but $\cos 300=$ a positive x value

In this case θ could be 0^{0} or 360° Clearly $\sin \theta$ has reduced to zero and $\cos \theta$ has become length 1 because it equals OP
ie $\sin 0=0$
but $\cos 0=1$

In this case $\theta=90^{\circ}$
Clearly $\sin 90=1$
but $\cos 90=0$

$$
\tan 90^{\circ}=\frac{1}{0}
$$

which is "undefined" or "not finite" or "non-finite" or "infinite".
Use of the term "infinity" implies a number immense size but it is not a number.

Infinite means it is not a finite number, (ie not a de-finite number)

In this case $\theta=180^{\circ}$
Clearly $\sin 180=0$ but $\cos 180=-1$ (remember $\cos \theta$ is the x coord of $O P=-1$
not the length of OP.)

In this case $\theta=270^{\circ}$
Clearly $\sin 270=-1$
but $\cos 270=0$

Anticlockwise angles are called POSITIVE but Clockwise angles are NEGATIVE. In this case suppose $\theta=-240^{\circ}$
So $\sin \left(-240^{\circ}\right)=$ a POSITIVE y value but $\cos \left(-240^{\circ}\right)=$ a NEGATIVE \boldsymbol{x} value

In all of the above cases $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and so $\tan \theta$ takes its sign either positive or negative from the individual signs of $\sin \theta$ and $\cos \theta$.
eg $\operatorname{since} \sin 120$ is positive but $\cos 120$ is negative, then $\tan \theta=\underline{\text { pos }}=$ negative neg
An old but good method to summarize this information on one diagram is to indicate which of sin, cos or tan is positive in the various quadrants.

Often reduced to :

T
C

Only $\tan \theta$ is $+\quad$ Only $\cos \theta$ is +
When the above is UNDERSTOOD, it makes sense where the sin and cos graphs are positive and where they are negative.

One last point:

X

Obviously $\boldsymbol{y}=\sin \boldsymbol{\theta}$ and $\boldsymbol{x}=\boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$
Also $y^{2}+x^{2}=1^{2} \quad$ (by Pythagoras' Theorem)
so $\sin ^{2} \theta+\cos ^{2} \theta=1$

